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CHAPTER

ONE

INSTALLATION

In short: pip install leidenalg. Alternatively, use Anaconda and get the conda packages from the conda-forge
channel, which supports both Unix, Mac OS and Windows.

For Unix like systems it is possible to install from source. For Windows this is overly complicated, and you are recom-
mended to use the binary wheels. There are two things that are needed by this package: the igraph C core library and
the python-igraph python package. For both, please see http://igraph.org.

Make sure you have all necessary tools for compilation. In Ubuntu this can be installed using sudo apt-get install
build-essential, please refer to the documentation for your specific system. Make sure that not only gcc is installed,
but also g++, as the leidenalg package is programmed in C++.

You can check if all went well by running a variety of tests using python setup.py test.

There are basically two installation modes, similar to the python-igraph package itself (from which most of the setup.
py comes).

1. No C core library is installed yet. The C core library of igraph that is provided within the leidenalg package is
compiled.

2. A C core library is already installed. In this case, you may link dynamically to the already installed version by
specifying --no-pkg-config. This is probably also the version that is used by the igraph package, but you may
want to double check this.

In case the python-igraph package is already installed before, make sure that both use the same versions (at least
the same minor version, which should be API compatible).

1
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CHAPTER

TWO

INTRODUCTION

The leidenalg package facilitates community detection of networks and builds on the package igraph. We abbreviate
the leidenalg package as la and the igraph package as ig in all Python code throughout this documentation.
Although the options in the leidenalg community detection package are extensive, most people are presumably
simply interested in detecting communities with a robust method that works well. This introduction explains how to
do that.

For those without patience (and some prior experience), if you simply want to detect communities given a graph G
using modularity, you simply use

>>> partition = la.find_partition(G, la.ModularityVertexPartition);

That’s it.

The result partition is in this case a ModularityVertexPartition which is derived from the igraph type ig.
VertexClustering, see the documentation for more details.

Why then should you use this package rather than for example the Louvain algorithm community_multilevel()
built into igraph? If you want to use modularity, and you work with a simple undirected, unweighted graph, then
indeed you may use the built-in method. For anything else, the functionality is not built-in and this package is for you.
Moreover, the Leiden algorithm is typically faster than the Louvain algorithm and returns partitions of a higher quality.

For those less familiar with igraph, let us work out an example more fully. First, we need to import the relevant
packages:

>>> import igraph as ig
>>> import leidenalg as la

Let us then look at one of the most famous examples of network science: the Zachary karate club (it even has a prize
named after it):

>>> G = ig.Graph.Famous('Zachary')

Now detecting communities with modularity is straightforward, as demonstrated earlier:

>>> partition = la.find_partition(G, la.ModularityVertexPartition)

You can simply plot the results as follows:

>>> ig.plot(partition)

3
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In this case, the algorithm actually finds the optimal partition (for small graphs like these you can check this using
community_optimal_modularity() in the igraph package), but this is generally not the case (although the algo-
rithm should do well). Although this is the optimal partition, it does not correspond to the split in two factions that was
observed for this particular network. We can uncover that split in two using a different method, CPMVertexPartition:

>>> partition = la.find_partition(G, la.CPMVertexPartition,
... resolution_parameter = 0.05);
>>> ig.plot(partition)

4 Chapter 2. Introduction
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Note that any additional **kwargs passed to find_partition() is passed on to the constructor of the given
partition_type. In this case, we can pass the resolution_parameter, but we could also pass weights or
node_sizes.

This is the real benefit of using this package: it provides implementations for six different methods (see Reference), and
works also on directed and weighted graphs. In addition, it also provides flexible functionality for customizing to some
extent the optimisation routines (see Advanced). Finally, it also allows to work with more complex multiplex graphs
(see Multiplex).

The Leiden algorithm [1] extends the Louvain algorithm [2], which is widely seen as one of the best algorithms for
detecting communities. However, the Louvain algorithm can lead to arbitrarily badly connected communities, whereas
the Leiden algorithm guarantees communities are well-connected. In fact, it converges towards a partition in which all
subsets of all communities are locally optimally assigned. Finally, the Leiden algorithm is also much faster, because it
relies on a fast local move routine. The “canonical” Leiden algorithm is implemented in Java and is faster than this
implementation, but less extensive.

5
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CHAPTER

THREE

ADVANCED

The basic interface explained in the Introduction should provide you enough to start detecting communities. However,
perhaps you want to improve the partitions further or want to do some more advanced analysis. In this section, we will
explain this in more detail.

3.1 Optimiser

Although the package provides simple access to the function find_partition(), there is actually an underlying
Optimiser class that is doing the actual work. We can also explicitly construct an Optimiser object:

>>> optimiser = la.Optimiser()

The function find_partition() then does nothing else then calling optimise_partition() on the provided par-
tition.

>>> diff = optimiser.optimise_partition(partition)

optimise_partition() simply tries to improve any provided partition. We can thus try to repeatedly call
optimise_partition() to keep on improving the current partition:

>>> G = ig.Graph.Erdos_Renyi(100, p=5./100)
>>> partition = la.ModularityVertexPartition(G)
>>> diff = 1
>>> while diff > 0:
... diff = optimiser.optimise_partition(partition)

Even if a call to optimise_partition() did not improve the current partition, it is still possible that a next call will
improve the partition. Of course, if the current partition is already optimal, this will never happen, but it is not possible
to decide whether a partition is optimal.

This functionality of repeating multiple iterations is actually already built-in. You can simply call

>>> diff = optimiser.optimise_partition(partition, n_iterations=10)

If n_iterations < 0 the optimiser continues iterating until it encounters an iterations that did not improve the par-
tition.

The optimise_partition() itself is built on two other basic algorithms: move_nodes() and merge_nodes(). You
can also call these functions yourself. For example:

>>> diff = optimiser.move_nodes(partition)

7
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or

>>> diff = optimiser.merge_nodes(partition)

The simpler Louvain algorithm aggregates the partition and repeats the move_nodes() on the aggregated partition.
We can easily emulate that:

>>> partition = la.ModularityVertexPartition(G)
>>> while optimiser.move_nodes(partition) > 0:
... partition = partition.aggregate_partition()

This summarises the whole Louvain algorithm in just three lines of code. Although this finds the final aggregate
partition, it leaves unclear the actual partition on the level of the individual nodes. In order to do that, we need to
update the membership based on the aggregate partition, for which we use the function from_coarse_partition().

>>> partition = la.ModularityVertexPartition(G)
>>> partition_agg = partition.aggregate_partition()
>>> while optimiser.move_nodes(partition_agg) > 0:
... partition.from_coarse_partition(partition_agg)
... partition_agg = partition_agg.aggregate_partition()

Now partition_agg contains the aggregate partition and partition contains the actual partition of the original
graph G. Of course, partition_agg.quality() == partition.quality() (save some rounding).

Instead of move_nodes(), you could also use merge_nodes(). These functions depend on choosing particular alter-
native communities: the documentation of the functions provides more detail.

One possibility is that rather than aggregating the partition based on the current partition, you can first refine the
partition and then aggregate it. This is what is done in the Leiden algorithm, and can be done using the functions
move_nodes_constrained() and merge_nodes_constrained(). Implementing this, you end up with the follow-
ing high-level implementation of the Leiden algorithm:

>>> # Set initial partition
>>> partition = la.ModularityVertexPartition(G)
>>> refined_partition = la.ModularityVertexPartition(G)
>>> partition_agg = refined_partition.aggregate_partition()
>>>
>>> while optimiser.move_nodes(partition_agg):
...
... # Get individual membership for partition
... partition.from_coarse_partition(partition_agg, refined_partition.membership)
...
... # Refine partition
... refined_partition = la.ModularityVertexPartition(G)
... optimiser.merge_nodes_constrained(refined_partition, partition)
...
... # Define aggregate partition on refined partition
... partition_agg = refined_partition.aggregate_partition()
...
... # But use membership of actual partition
... aggregate_membership = [None] * len(refined_partition)
... for i in range(G.vcount()):
... aggregate_membership[refined_partition.membership[i]] = partition.membership[i]
... partition_agg.set_membership(aggregate_membership)

8 Chapter 3. Advanced
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These functions in turn rely on two key functions of the partition: diff_move() and move_node(). The first cal-
culates the difference when moving a node, and the latter actually moves the node, and updates all necessary internal
administration. The move_nodes() then does something as follows

>>> for v in G.vs:
... best_comm = max(range(len(partition)),
... key=lambda c: partition.diff_move(v.index, c))
... partition.move_node(v.index, best_comm)

The actual implementation is more complicated, but this gives the general idea.

This package builds on a previous implementation of the Louvain algorithm in louvain-igraph. To illustrate the differ-
ence between louvain-igraph and leidenalg, we ran both algorithms for 10 iterations on a Youtube network of
more than 1 million nodes and almost 3 million edges.

The results are quite clear: Leiden is able to achieve a higher modularity in less time. It also points out that it is usually
a good idea to run Leiden for at least two iterations; this is also the default setting.

Note that even if the Leiden algorithm did not find any improvement in this iteration, it is always possible that it will
find some improvement in the next iteration.

3.1. Optimiser 9
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3.2 Resolution profile

Some methods accept so-called resolution parameters, such as CPMVertexPartition or
RBConfigurationVertexPartition. Although some methods may seem to have some ‘natural’ resolution,
in reality this is often quite arbitrary. However, the methods implemented here (which depend in a linear way on
resolution parameters) allow for an effective scanning of a full range for the resolution parameter. In particular, these
methods somehow can be formulated as 𝑄 = 𝐸 − 𝛾𝑁 where 𝐸 and 𝑁 are some other quantities. In the case for
CPMVertexPartition for example, 𝐸 =

∑︀
𝑐 𝑚𝑐 is the number of internal edges and 𝑁 =

∑︀
𝑐

(︀
𝑛𝑐

2

)︀
is the sum of the

internal possible edges. The essential insight for these formulations1 is that if there is an optimal partition for both 𝛾1
and 𝛾2 then the partition is also optimal for all 𝛾1 ≤ 𝛾 ≤ 𝛾2.

Such a resolution profile can be constructed using the Optimiser object.

>>> G = ig.Graph.Famous('Zachary')
>>> optimiser = la.Optimiser()
>>> profile = optimiser.resolution_profile(G, la.CPMVertexPartition,
... resolution_range=(0,1))

Plotting the resolution parameter versus the total number of internal edges we thus obtain something as follows:

Now profile contains a list of partitions of the specified type (CPMVertexPartition in this case) for resolu-
tion parameters at which there was a change. In particular, profile[i] should be better until profile[i+1], or
stated otherwise for any resolution parameter between profile[i].resolution_parameter and profile[i+1].
resolution_parameter the partition at position i should be better. Of course, there will be some variations because
optimise_partition() will find partitions of varying quality. The change points can then also vary for different
runs.

1 Traag, V. A., Krings, G., & Van Dooren, P. (2013). Significant scales in community structure. Scientific Reports, 3, 2930. 10.1038/srep02930
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This function repeatedly calls optimise_partition() and can therefore require a lot of time. Especially for resolu-
tion parameters right around a change point there may be many possible partitions, thus requiring a lot of runs.

3.3 Fixed nodes

For some purposes, it might be beneficial to only update part of a partition. For example, perhaps we previously
already ran the Leiden algorithm on some dataset, and did some analysis on the resulting partition. If we then gather
new data, and in particular new nodes, it might be useful to keep the previous community assignments fixed, while
only updating the community assignments for the new nodes. This can be done using the is_membership_fixed
argument of find_partition(), see2 for some details.

For example, suppose we previously detected partition for graph G, which was extended to graph G2. Assuming that
the previously exiting nodes are identical, we could create a new partition by doing

>>> new_membership = list(range(G2.vcount()))
... new_membership[:G.vcount()] = partition.membership

We can then only update the community assignments for the new nodes as follows

>>> new_partition = la.CPMVertexPartition(G2, new_membership,
... resolution_parameter=partition.resolution_
→˓parameter)
... is_membership_fixed = [i < G.vcount() for i in range(G2.vcount())]
>>> diff = optimiser.optimise_partition(new_partition, is_membership_fixed=is_membership_
→˓fixed)

In this example we used CPMVertexPartition. but any other VertexPartition would work as well.

3.4 Maximum community size

In some cases, you may want to restrict the community sizes. It is possible to indicate this by setting the
max_comm_size parameter so that this constraint is taken into account during optimisation. In addition, it is pos-
sible to pass this parameter directly when using find_partition(). For example

>>> partition = la.find_partition(G, la.ModularityVertexPartition, max_comm_size=10)

3.5 References

2 Zanini, F., Berghuis, B. A., Jones, R. C., Robilant, B. N. di, Nong, R. Y., Norton, J., Clarke, Michael F., Quake, S. R. (2019). northstar:
leveraging cell atlases to identify healthy and neoplastic cells in transcriptomes from human tumors. BioRxiv, 820928. 10.1101/820928

3.3. Fixed nodes 11
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CHAPTER

FOUR

MULTIPLEX

The implementation of multiplex community detection builds on ideas in1. The most basic form simply considers two
or more graphs which are defined on the same vertex set, but which have differing edge sets. In this context, each node
is identified with a single community, and cannot have different communities for different graphs. We call this layers
of graphs in this context. This format is actually more flexible than it looks, but you have to construct the layer graphs
in a smart way. Instead of having layers of graphs which are always identified on the same vertex set, you could define
slices of graphs which do not necessarily have the same vertex set. Using slices we would like to assign a node to
a community for each slice, so that the community for a node can be different for different slices, rather than always
being the same for all layers. We can translate slices into layers but it is not an easy transformation to grasp fully. But
by doing so, we can again rely on the same machinery we developed for dealing with layers.

Throughout the remained of this section, we assume an optimiser has been created:

>>> optimiser = la.Optimiser()

4.1 Layer multiplex

If we have two graphs which are identified on exactly the same vertex set, we say we have two layers. For example, sup-
pose graph G_telephone contains the communication between friends over the telephone and that the graph G_email
contains the communication between friends via mail. The exact same vertex set then means that G_telephone.vs[i]
is identical to the node G_email.vs[i]. For each layer we can separately specify the type of partition that we look
for. In principle they could be different for each layer, but for now we will assume the type of partition is the same for
all layers. The quality of all partitions combined is simply the sum of the individual qualities for the various partitions,
weighted by the layer_weight. If we denote by 𝑞𝑘 the quality of layer 𝑘 and the weight by 𝑤𝑘, the overall quality is
then

𝑞 =
∑︁
𝑘

𝑤𝑘𝑞𝑘.

The optimisation algorithm is no different from the standard algorithm. We simply calculate the overall difference of
moving a node to another community as the sum of the individual differences in all partitions. The rest (aggregating
and repeating on the aggregate partition) simple proceeds as usual.

The most straightforward way to use this is then to use find_partition_multiplex():

>>> membership, improv = la.find_partition_multiplex(
... [G_telephone, G_email],
... la.ModularityVertexPartition);

1 Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J.-P. (2010). Community structure in time-dependent, multiscale, and
multiplex networks. Science, 328(5980), 876–8. 10.1126/science.1184819

13
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Note: You may need to carefully reflect how you want to weigh the importance of an individual layer.
Since the ModularityVertexPartition is normalised by the number of links, you essentially weigh layers
the same, independent of the number of links. This may be undesirable, in which case it may be better
to use RBConfigurationVertexPartition, which is unnormalised. Alternatively, you may specify different
layer_weights.

Similar to the simpler function find_partition(), it is a simple helper function. The function returns a membership
vector, because the membership for all layers is identical. You can also control the partitions and optimisation in more
detail. Perhaps it is better to use CPMVertexPartition with different resolution parameter for example for different
layers of the graph. For example, using email creates a more connected structure because multiple people can be
involved in a single mail, which may require a higher resolution parameter for the email graph.

>>> part_telephone = la.CPMVertexPartition(
... G_telephone, resolution_parameter=0.01);
>>> part_email = la.CPMVertexPartition(
... G_email, resolution_parameter=0.3);
>>> diff = optimiser.optimise_partition_multiplex(
... [part_telephone, part_email]);

Note that part_telephone and part_email contain exactly the same partition, in the sense that part_telephone.
membership == part_email.membership. The underlying graph is of course different, and hence the individual
quality will also be different.

Some layers may have a more important role in the partition and this can be indicated by the layer_weight. Using
half the weight for the email layer for example would be possible as follows:

>>> diff = optimiser.optimise_partition_multiplex(
... [part_telephone, part_email],
... layer_weights=[1,0.5]);

4.1.1 Negative links

The layer weights are especially useful when negative links are present, representing for example conflict or animosity.
Most methods (except CPM) only accept positive weights. In order to deal with graphs that do have negative links, a
solution is to separate the graph into two layers: one layer with positive links, the other with only negative links2. In
general, we would like to have relatively many positive links within communities, while for negative links the opposite
holds: we want many negative links between communities. We can easily do this within the multiplex layer framework
by passing in a negative layer weight. For example, suppose we have a graph G with possibly negative weights. We can
then separate it into a positive and negative graph as follows:

>>> G_pos = G.subgraph_edges(G.es.select(weight_gt = 0), delete_vertices=False);
>>> G_neg = G.subgraph_edges(G.es.select(weight_lt = 0), delete_vertices=False);
>>> G_neg.es['weight'] = [-w for w in G_neg.es['weight']];

We can then simply detect communities using;

>>> part_pos = la.ModularityVertexPartition(G_pos, weights='weight');
>>> part_neg = la.ModularityVertexPartition(G_neg, weights='weight');
>>> diff = optimiser.optimise_partition_multiplex(

(continues on next page)

2 Traag, V. A., & Bruggeman, J. (2009). Community detection in networks with positive and negative links. Physical Review E, 80(3), 036115.
10.1103/PhysRevE.80.036115
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(continued from previous page)

... [part_pos, part_neg],

... layer_weights=[1,-1]);

4.1.2 Bipartite

For some methods it may be possible to to community detection in bipartite networks. Bipartite networks are special
in the sense that they have only links between the two different classes, and no links within a class are allowed. For
example, there might be products and customers, and there is a link between 𝑖 and 𝑗 if a product 𝑖 is bought by a
customer 𝑗. In this case, there are no links among products, nor among customers. One possible approach is simply
project this bipartite network into the one or the other class and then detect communities. But then the correspondence
between the communities in the two different projections is lost. Detecting communities in the bipartite network can
therefore be useful.

Setting this up requires a bit of a creative approach, which is why it is also explicitly explained here. We will explain
it for the CPM method, and then show how this works the same for some related measures. In the case of CPM you
would like to be able to set three different resolution parameters: one for within each class 𝛾0, 𝛾1, and one for the links
between classes, 𝛾01. Then the formulation would be

𝑄 =
∑︁
𝑖𝑗

[𝐴𝑖𝑗 − (𝛾0𝛿(𝑠𝑖, 0) + 𝛾1𝛿(𝑠𝑖, 1))𝛿(𝑠𝑖, 𝑠𝑗)− 𝛾01(1− 𝛿(𝑠𝑖, 𝑠𝑗))]𝛿(𝜎𝑖, 𝜎𝑗)

where 𝑠𝑖 denotes the bipartite class of a node and 𝜎𝑖 the community of the node as elsewhere in the documentation.
Rewriting as a sum over communities gives a bit more insight

𝑄 =
∑︁
𝑐

(𝑒𝑐 − 𝛾012𝑛𝑐(0)𝑛𝑐(1)− 𝛾0𝑛
2
𝑐(0)− 𝛾1𝑛

2
𝑐(1))

where 𝑛𝑐(0) is the number of nodes in community 𝑐 of class 0 (and similarly for 1) and 𝑒𝑐 is the number of edges within
community 𝑐. We denote by 𝑛𝑐 = 𝑛𝑐(0) + 𝑛𝑐(1) the total number of nodes in community 𝑐. Note that

𝑛2
𝑐 = (𝑛𝑐(0) + 𝑛𝑐(1))

2

= 𝑛𝑐(0)
2 + 2𝑛𝑐(0)𝑛𝑐(1) + 𝑛𝑐(1)

2

We then create three different layers: (1) all nodes have node_size = 1 and all relevant links; (2) only nodes of class
0 have node_size = 1 and no links; (3) only nodes of class 1 have node_size = 1 and no links. If we add the first
with resolution parameter 𝛾01, and the others with resolution parameters 𝛾01 − 𝛾0 and 𝛾01 − 𝛾1, but the latter two with
a layer weight of -1 while the first layer has layer weight 1, we obtain the following:

𝑄 =
∑︁
𝑐

(𝑒𝑐 − 𝛾01𝑛
2
𝑐)−

∑︁
𝑐

(−(𝛾01 − 𝛾0)𝑛𝑐(0)
2)−

∑︁
𝑐

(−(𝛾01 − 𝛾1)𝑛𝑐(0)
2)

=
∑︁
𝑐

[𝑒𝑐 − 𝛾012𝑛𝑐(0)𝑛𝑐(1)− 𝛾01𝑛𝑐(0)
2 − 𝛾01𝑛𝑐(1)

2) + (𝛾01 − 𝛾0)𝑛𝑐(0)
2 + (𝛾01 − 𝛾1)𝑛𝑐(1)

2]

=
∑︁
𝑐

(𝑒𝑐 − 𝛾012𝑛𝑐(0)𝑛𝑐(1)− 𝛾0𝑛𝑐(0)
2 − 𝛾1𝑛𝑐(1)

2)

Hence detecting communities with these three layers corresponds to detecting communities in bipartite networks. Al-
though we worked out this example for directed network including self-loops (since it is easiest), it works out similarly
for undirected networks (with or without self-loops). This only corresponds to the CPM method. However, using a
little additional trick, we can also make this work for modularity. Essentially, modularity is nothing else than CPM
with the node_size set to the degree, and the resolution parameter set to 𝛾 = 1

2𝑚 . In particular, in general (i.e. not
specifically for bipartite graph) if node_sizes=G.degree() we then obtain

𝑄 =
∑︁
𝑖𝑗

𝐴𝑖𝑗 − 𝛾𝑘𝑖𝑘𝑗
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In the case of bipartite graphs something similar is obtained, but then correctly adapted (as long as the resolution
parameter is also appropriately rescaled). Note that this is only possible for modularity for undirected graphs. Hence,
we can also detect communities in bipartite networks using modularity by using this little trick. The definition of
modularity for bipartite graphs is identical to the formulation of bipartite modularity provided in3.

All of this has been implemented in the constructor Bipartite(). You can simply pass in a bipartite network with
the classes appropriately defined in G.vs['type'] or equivalent. This function assumes the two classes are coded by
0 and 1, and if this is not the case it will try to convert it into such categories by ig.UniqueIdGenerator().

An explicit example of this:

>>> p_01, p_0, p_1 = la.CPMVertexPartition.Bipartite(G,
... resolution_parameter_01=0.1);
>>> diff = optimiser.optimise_partition_multiplex([p_01, p_0, p_1],
... layer_weights=[1, -1, -1]);

4.2 Slices to layers

The multiplex formulation as layers has two limitations: (1) each graph needs to have an identical vertex set; (2) each
node is only in a single community. Ideally, one would like to relax both these requirements, so that you can work
with graphs that do not need to have identical nodes and where nodes can be in different communities in different
layers. For example, a person could be in one community when looking at his professional relations, but in another
community looking at his personal relations. Perhaps more commonly: a person could be in one community at time 1
and in another community at time 2.

Fortunately, this is also possible with this package. We call the more general formulation slices in contrast to the layers
required by the earlier functions. Slices are then just different graphs, which do not need to have the same vertex set in
any way. The idea is to build one big graph out of all the slices and then decompose it again in layers that correspond
with slices. The key element is that some slices are coupled: for example two consecutive time windows, or simply two
different slices of types of relations. Because any two slices can be coupled in theory, we represent the coupling itself
again with a graph. The nodes of this coupling graph thus are slices, and the (possibly weighted) links in the coupling
graph represent the (possibly weighted) couplings between slices. Below an example with three different time slices,
where slice 1 is coupled to slice 2, which in turn is coupled to slice 3:

3 Barber, M. J. (2007). Modularity and community detection in bipartite networks. Physical Review E, 76(6), 066102. 10.1103/Phys-
RevE.76.066102
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The coupling graph thus consists of three nodes and a simple line structure: 1 -- 2 -- 3. We convert this into layers
by putting all nodes of all slices in one big network. Each node is thus represented by a tuple (node, slice) in a
certain sense. Out of this big network, we then only take those edges that are defined between nodes of the same slice,
which then constitutes a single layer. Finally, we need one more layer for the couplings. In addition, for methods such
as CPMVertexPartition, so-called node_sizes are required, and for them to properly function, they should be set to
0 (which is handled appropriately by the package). We thus obtain equally many layers as we have slices, and we need
one more layer for representing the interslice couplings. For the example provided above, we thus obtain the following:

4.2. Slices to layers 17
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To transform slices into layers using a coupling graph, this package provides layers_to_slices(). For the example
above, this would function as follows. First create the coupling graph assuming we have three slices G_1, G_2 and G_3:

>>> G_coupling = ig.Graph.Formula('1 -- 2 -- 3');
>>> G_coupling.es['weight'] = 0.1; # Interslice coupling strength
>>> G_coupling.vs['slice'] = [G_1, G_2, G_3]
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Then we convert them to layers

>>> layers, interslice_layer, G_full = la.slices_to_layers(G_coupling);

Now we still have to create partitions for all the layers. We can freely choose here to use the same partition types for
all partitions, or to use different types for different layers.

Warning: The interslice layer should usually be of type CPMVertexPartition with a
resolution_parameter=0 and node_sizes set to 0. The G.vs[node_size] is automatically set to 0
for all nodes in the interslice layer in slices_to_layers(), so you can simply pass in the attribute node_size.
Unless you know what you are doing, simply use these settings.

Warning: When using methods that accept a node_size argument, this should always be used.
This is the case for CPMVertexPartition, RBERVertexPartition, SurpriseVertexPartition and
SignificanceVertexPartition.

>>> partitions = [la.CPMVertexPartition(H, node_sizes='node_size',
... weights='weight', resolution_
→˓parameter=gamma)
... for H in layers];
>>> interslice_partition = la.CPMVertexPartition(interslice_layer, resolution_
→˓parameter=0,
... node_sizes='node_size', weights=
→˓'weight');

You can then simply optimise these partitions as before using optimise_partition_multiplex():

>>> diff = optimiser.optimise_partition_multiplex(partitions + [interslice_partition]);

4.3 Temporal community detection

One of the most common tasks for converting slices to layers is that we have slices at different points in time. We call
this temporal community detection. Because it is such a common task, we provide several helper functions to simplify
the above process. Let us assume again that we have three slices G_1, G_2 and G_3 as in the example above. The most
straightforward function is find_partition_temporal():

>>> membership, improvement = la.find_partition_temporal(
... [G_1, G_2, G_3],
... la.CPMVertexPartition,
... interslice_weight=0.1,
... resolution_parameter=gamma)

This function only returns the membership vectors for the different time slices, rather than actual partitions.

Rather than directly detecting communities, you can also obtain the actual partitions in a slightly more convenient way
using time_slices_to_layers():

>>> layers, interslice_layer, G_full = \
... la.time_slices_to_layers([G_1, G_2, G_3],

(continues on next page)

4.3. Temporal community detection 19
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(continued from previous page)

... interslice_weight=0.1);
>>> partitions = [la.CPMVertexPartition(H, node_sizes='node_size',
... weights='weight',
... resolution_parameter=gamma)
... for H in layers];
>>> interslice_partition = \
... la.CPMVertexPartition(interslice_layer, resolution_parameter=0,
... node_sizes='node_size', weights='weight');
>>> diff = optimiser.optimise_partition_multiplex(partitions + [interslice_partition]);

Both these functions assume that the interslice coupling is always identical for all slices. If you want more finegrained
control, you will have to use the earlier explained functions.

4.4 References
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FIVE

IMPLEMENTATION

If you have a cool new idea for a better method, and you want to optimise it, you can easily plug it in the current package.
This section explains how the package is setup internally, and how you can extend it. Most of this concerns C++, and
Python only comes in when exposing the classes from C++.

The core of the Leiden algorithm is implemented in C++ in the package libleidenalg, available from https://github.
com/vtraag/libleidenalg. This C++ library is used as the core for the Python package, which is just an interface to the
underlying C++ library. New methods need to be added to the C++ library first, and then exposed to the Python interface.
For more information, please see the contributing guide of the libleidenalg package at https://github.com/vtraag/
libleidenalg/blob/main/CONTRIBUTING.md

5.1 Python

Exposing the method to python takes a bit more effort. There are various places in which you need to change/add
things. In the following, we assume you created a new class called CoolVertexPartition in libleidenalg. Please
then follow the following steps:

1. Your own new VertexPartition class should add some specific methods. In particular, you need to ensure you
create a method

CoolVertexPartition* CoolVertexPartition::create(Graph* graph)
{
return new CoolVertexPartition(graph);

}

and

CoolVertexPartition* CoolVertexPartition::create(Graph* graph, vector<size_t> const&
→˓ membership)
{
return new CoolVertexPartition(graph, membership);

}

These methods ensure that based on a current partition, we can create a new partition (without knowing its type).

2. In python_partition_interface.cpp some methods need to be added. In particular

PyObject* _new_CoolVertexPartition(PyObject *self, PyObject *args, PyObject *keywds)

You should be able to simply copy an existing method, and adapt it to your own needs.

3. These methods need to be exposed in pynterface.h. In particular, you need to add the method you created in
step (2) to leiden_funcs[]. Again, you should be able to simply copy an existing line.
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4. You can then finally create the Python class in VertexPartition.py. The base class derives from the
VertexClustering from igraph, so that it is compatible with all operations in igraph. You should add
the method as follows:

class CoolVertexPartition(MutableVertexPartition):

def __init__(self, ... ):
...

Again, you should be able to copy the outline for another class and adapt it to your own needs. Don’t forget to
change to docstring to update the documentation so that everybody knows how your new cool method works.

5. Expose your newly created python class directly in __init__.py by importing it:

from .VertexPartition import CoolVertexPartition

That’s it! You’re done and should now be able to find communities using your new CoolVertexPartition:

>>> la.find_partition(G, la.CoolVertexPartition);
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SIX

REFERENCE

6.1 Reference

6.1.1 Module functions

This package implements the Leiden algorithm in C++ and exposes it to python. It relies on (python-)igraph for
it to function. Besides the relative flexibility of the implementation, it also scales well, and can be run on graphs of
millions of nodes (as long as they can fit in memory). Each method is represented by a different class, all of whom
derive from MutableVertexPartition. In addition, multiplex graphs are supported as layers, which also supports
multislice representations.

Examples

The simplest example just finds a partition using modularity

>>> G = ig.Graph.Tree(100, 3)
>>> partition = la.find_partition(G, la.ModularityVertexPartition)

Alternatively, one can access the different optimisation routines individually and construct partitions oneself. These
partitions can then be optimised by constructing an Optimiser object and running optimise_partition().

>>> G = ig.Graph.Tree(100, 3)
>>> partition = la.CPMVertexPartition(G, resolution_parameter = 0.1)
>>> optimiser = la.Optimiser()
>>> diff = optimiser.optimise_partition(partition)

The Optimiser class contains also the different subroutines that are used internally by optimise_partition(). In
addition, through the Optimiser class there are various options available for changing some of the optimisation proce-
dure which can affect both speed and quality, which are not immediately available in leidenalg.find_partition().

leidenalg.find_partition(graph, partition_type, initial_membership=None, weights=None, n_iterations=2,
max_comm_size=0, seed=None, **kwargs)

Detect communities using the default settings.

This function detects communities given the specified method in the partition_type. This should be
type derived from VertexPartition.MutableVertexPartition, e.g. ModularityVertexPartition
or CPMVertexPartition. Optionally an initial membership and edge weights can be provided. Re-
maining **kwargs are passed on to the constructor of the partition_type, including for example a
resolution_parameter.

Parameters

23
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• graph (ig.Graph) – The graph for which to detect communities.

• partition_type (type of :class:`) – The type of partition to use for optimisation.

• initial_membership (list of int) – Initial membership for the partition. If None then
defaults to a singleton partition.

• weights (list of double, or edge attribute) – Weights of edges. Can be either
an iterable or an edge attribute.

• n_iterations (int) – Number of iterations to run the Leiden algorithm. By default, 2
iterations are run. If the number of iterations is negative, the Leiden algorithm is run until
an iteration in which there was no improvement.

• max_comm_size (non-negative int) – Maximal total size of nodes in a community. If
zero (the default), then communities can be of any size.

• seed (int) – Seed for the random number generator. By default uses a random seed if
nothing is specified.

• **kwargs – Remaining keyword arguments, passed on to constructor of partition_type.

Returns
The optimised partition.

Return type
partition

See also:
Optimiser.optimise_partition()

Examples

>>> G = ig.Graph.Famous('Zachary')
>>> partition = la.find_partition(G, la.ModularityVertexPartition)

leidenalg.find_partition_multiplex(graphs, partition_type, layer_weights=None, n_iterations=2,
max_comm_size=0, seed=None, **kwargs)

Detect communities for multiplex graphs.

Each graph should be defined on the same set of vertices, only the edges may differ for different graphs. See
Optimiser.optimise_partition_multiplex() for a more detailed explanation.

Parameters
• graphs (list of ig.Graph) – List of ig.Graph graphs to optimise.

• partition_type (type of MutableVertexPartition) – The type of partition to use for
optimisation (identical for all graphs).

• layer_weights (list of double) – List containing weights of each layer. If None (the
default), then all layers are weighted with 1.

• n_iterations (int) – Number of iterations to run the Leiden algorithm. By default, 2
iterations are run. If the number of iterations is negative, the Leiden algorithm is run until
an iteration in which there was no improvement.

• max_comm_size (non-negative int) – Maximal total size of nodes in a community. If
zero (the default), then communities can be of any size.
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• seed (int) – Seed for the random number generator. By default uses a random seed if
nothing is specified.

• **kwargs – Remaining keyword arguments, passed on to constructor of partition_type.

Returns
• list of int – membership of nodes.

• float – Improvement in quality of combined partitions, see Optimiser.
optimise_partition_multiplex().

Notes

We don’t return a partition in this case because a partition is always defined on a single graph. We therefore
simply return the membership (which is the same for all layers).

See also:
Optimiser.optimise_partition_multiplex(), slices_to_layers()

Examples

>>> n = 100
>>> G_1 = ig.Graph.Lattice([n], 1)
>>> G_2 = ig.Graph.Lattice([n], 1)
>>> membership, improvement = la.find_partition_multiplex([G_1, G_2],
... la.
→˓ModularityVertexPartition)

leidenalg.find_partition_temporal(graphs, partition_type, interslice_weight=1, slice_attr='slice',
vertex_id_attr='id', edge_type_attr='type', weight_attr='weight',
n_iterations=2, max_comm_size=0, seed=None, **kwargs)

Detect communities for temporal graphs.

Each graph is considered to represent a time slice and does not necessarily need to be defined on the same set of
vertices. Nodes in two consecutive slices are identified on the basis of the vertex_id_attr, i.e. if two nodes in
two consecutive slices have an identical value of the vertex_id_attr they are coupled. The vertex_id_attr
should hence be unique in each slice. The nodes are then coupled with a weight of interslice_weightwhich is
set in the edge attribute weight_attr. No weight is set if the interslice_weight is None (i.e. corresponding
in practice with a weight of 1). See time_slices_to_layers() for a more detailed explanation.

Parameters
• graphs (list of ig.Graph) – List of leidenalg.VertexPartition layers to optimise.

• partition_type (type of VertexPartition.MutableVertexPartition) – The type of
partition to use for optimisation (identical for all graphs).

• interslice_weight (float) – The weight of the coupling between two consecutive time
slices.

• slice_attr (string) – The vertex attribute to use for indicating the slice of a node.

• vertex_id_attr (string) – The vertex to use to identify nodes.

• edge_type_attr (string) – The edge attribute to use for indicating the type of link (in-
terslice or intraslice).
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• weight_attr (string) – The edge attribute used to indicate the weight.

• n_iterations (int) – Number of iterations to run the Leiden algorithm. By default, 2
iterations are run. If the number of iterations is negative, the Leiden algorithm is run until
an iteration in which there was no improvement.

• max_comm_size (non-negative int) – Maximal total size of nodes in a community. If
zero (the default), then communities can be of any size.

• seed (int) – Seed for the random number generator. By default uses a random seed if
nothing is specified.

• **kwargs – Remaining keyword arguments, passed on to constructor of partition_type.

Returns
• list of membership – list containing for each slice the membership vector.

• float – Improvement in quality of combined partitions, see Optimiser.
optimise_partition_multiplex().

See also:
time_slices_to_layers(), slices_to_layers()

Examples

>>> n = 100
>>> G_1 = ig.Graph.Lattice([n], 1)
>>> G_1.vs['id'] = range(n)
>>> G_2 = ig.Graph.Lattice([n], 1)
>>> G_2.vs['id'] = range(n)
>>> membership, improvement = la.find_partition_temporal([G_1, G_2],
... la.
→˓ModularityVertexPartition,
... interslice_weight=1)

leidenalg.slices_to_layers(G_coupling, slice_attr='slice', vertex_id_attr='id', edge_type_attr='type',
weight_attr='weight')

Convert a coupling graph of slices to layers of graphs.

This function converts a graph of slices to layers so that they can be used with this package.

This function assumes that the slices are represented by nodes in G_coupling, and stored in the attribute
slice_attr. In other words, G_coupling.vs[slice_attr] should contain ig.Graph s . The slices will be
converted to layers, and nodes in different slices will be coupled if the two slices are connected in G_coupling.
Nodes in two connected slices are identified on the basis of the vertex_id_attr, i.e. if two nodes in two
connected slices have an identical value of the vertex_id_attr they will be coupled. The vertex_id_attr
should hence be unique in each slice. Each node in the resulting layer graphs will contain two vertex attributes
with the name of slice_attr and vertex_id_attr that refer respectively to the slice and id of the node.

The weight of the coupling is determined by the weight of this link in G_coupling, as determined by the
weight_attr.

Parameters
• G_coupling (ig.Graph) – The graph connecting the different slices.

• slice_attr (string) – The vertex attribute which contains the slices.
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• vertex_id_attr (string) – The vertex attribute which is used to identify whether two
nodes in two slices represent the same node, and hence, should be coupled.

• edge_type_attr (string) – The edge attribute to use for indicating the type of link
(interslice or intraslice).

• weight_attr (string) – The edge attribute used to indicate the (coupling) weight.

Returns
• G_layers (list of ig.Graph) – A list of slices converted to layers.

• G_interslice (ig.Graph) – The interslice coupling layer.

• G (ig.Graph) – The complete graph containing all layers and interslice couplings.

Notes

The distinction between slices and layers is not easy to grasp. Slices in this context refer to graphs that somehow
represents different aspects of a network. The simplest example is probably slices that represents time: there are
different snapshots network across time, and each snapshot is considered a slice. Some nodes may drop out of
the network over time, while others enter the network. Edges may change over time, or the weight of the links
may change over time. This is just the simplest example of a slice, and there may be different, more complex
possibilities. Below an example with three time slices:
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Now in order to optimise partitions across these different slices, we represent them slightly differently, namely
as layers. The idea of layers is that all graphs always are defined on the same set of nodes, and that only the links
differ for different layers. We thus create new nodes as combinations of original nodes and slices. For example,
if node 1 existed in both slice 1 and in slice 2, we will thus create two nodes to build the layers: a node 1-1 and a
node 1-2. Additionally, if the slices are connected in the slice graph, the two nodes would also be connected, so
there would be a linke between node 1-1 and 1-2. Different slices will then correspond to different layers: each
layer only contains the link for that particular slice. In addition, for methods such as CPMVertexPartition,
so-called node_sizes are required, and for them to properly function, they should be set to 1 only for nodes of
a layer that represent nodes of the corresponding slice and 0 for the other nodes (which is handled appropriately
in this function, and stored in the vertex attribute node_size). Additionally, node_sizes should be set to 0 for
the interslice coupling layer. We thus obtain equally many layers as we have slices, and we need one more layer
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for representing the interslice couplings. For the example provided above, we thus obtain the following:

The idea of doing community detection with slices is further detailed in [1].
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References

See also:
find_partition_temporal(), time_slices_to_layers()

leidenalg.time_slices_to_layers(graphs, interslice_weight=1, slice_attr='slice', vertex_id_attr='id',
edge_type_attr='type', weight_attr='weight')

Convert time slices to layer graphs.

Each graph is considered to represent a time slice. This function simply connects all the consecutive
slices (i.e. the slice graph) with an interslice_weight. The further conversion is then delegated to
slices_to_layers(), which also provides further details.

See also:
find_partition_temporal(), slices_to_layers()

6.1.2 Optimiser

class leidenalg.Optimiser

Bases: object

Class for doing community detection using the Leiden algorithm.

The Leiden algorithm [1] derives from the Louvain algorithm [2]. The Louvain algorithm has an elegant for-
mulation. It consists of two phases: (1) move nodes between communities; (2) aggregate the graph. It then
repeats these phases on the aggregate graph. The Leiden algorithm consists of three phases: (1) move nodes; (2)
refine communities; (3) aggregate the graph based on the refinement. The Louvain algorithm can lead to arbi-
trarily badly connected communities, whereas the Leiden algorithm guarantees communities are well-connected.
In fact, it converges towards a partition in which all subsets of all communities are locally optimally assigned.
Finally, the Leiden algorithm is also much faster, because it relies on a fast local move routine.

There is one, rather technical, difference with the original Leiden algorithm. This implementation provides a
general optimisation routine for any quality function. There is one aspect of the original Leiden algorithm that
cannot be translated well in this framework: when merging subcommunities in the refinement procedure, it does
not consider whether they are sufficiently well connected to the rest of the community. This implementation
therefore does not guarantee subpartition 𝛾-density. However, all other guarantees still hold:

After each iteration
1. 𝛾-separation

2. 𝛾-connectivity

After a stable iteration
3. Node optimality

4. Some subsets are locally optimally assigned

Asymptotically
5. Uniform 𝛾-density

6. Subset optimality

The optimiser class provides a number of different methods for optimising a given partition. The overall op-
timisation procedure optimise_partition() calls either move_nodes() or merge_nodes() (which is con-
trolled by optimise_routine) then aggregates the graph and repeats the same procedure. Possible, indicated
by refine_partition the partition is refined before aggregating, meaning that subsets of communities are
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considered for moving around. Which routine is used for the refinement is indicated by refine_routine. For
calculating the actual improvement of moving a node (corresponding a subset of nodes in the aggregate graph),
the code relies on diff_move()which provides different values for different methods (e.g. modularity or CPM).
The default settings are consistent with the Leiden algorithm. By not doing the refinement, you essentially get
the Louvain algorithm with a fast local move. Finally, the Optimiser class provides a routine to construct a
resolution_profile() on a resolution parameter.

References

Create a new Optimiser object

property consider_comms

Determine how alternative communities are considered for moving a node for optimising a partition.

Nodes will only move to alternative communities that improve the given quality function.

Notes

This attribute should be set to one of the following values

• leidenalg.ALL_NEIGH_COMMS Consider all neighbouring communities for moving.

• leidenalg.ALL_COMMS Consider all communities for moving. This is especially useful in the case
of negative links, in which case it may be better to move a node to a non-neighbouring community.

• leidenalg.RAND_NEIGH_COMM Consider a random neighbour community for moving. The probabil-
ity to choose a community is proportional to the number of neighbours a node has in that community.

• leidenalg.RAND_COMM Consider a random community for moving. The probability to choose a
community is proportional to the number of nodes in that community.

property consider_empty_community

if True consider also moving nodes to an empty community (default).

Type
boolean

property max_comm_size

Constrain the maximal community size.

By default (zero), communities can be of any size. If this is set to a positive integer value, then communities
will be constrained to be at most this total size.

merge_nodes(partition, is_membership_fixed=None, consider_comms=None)
Merge nodes for optimising the partition.

Parameters
• partition – The partition for which to merge nodes.

• is_membership_fixed (list of bools or None) – Boolean list of nodes that are not
allowed to change community. The length of this list must be equal to the number of nodes.
By default (None) all nodes can change community during the optimization.

• consider_comms – If None uses consider_comms, but can be set to something else.

Returns
Improvement in quality function.
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Return type
float

Notes

This function loop over all nodes once and tries to merge them with another community. Merging in this
case implies that a node will never be removed from a community, only merged with other communities.

See also:
Optimiser.move_nodes(), Optimiser.merge_nodes_constrained()

Examples

>>> G = ig.Graph.Famous('Zachary')
>>> optimiser = la.Optimiser()
>>> partition = la.ModularityVertexPartition(G)
>>> diff = optimiser.merge_nodes(partition)

merge_nodes_constrained(partition, constrained_partition, consider_comms=None)
Merge nodes for refining the partition.

Parameters
• partition – The partition for which to merge nodes.

• constrained_partition – The partition within which we may merge nodes.

• consider_comms – If None uses refine_consider_comms, but can be set to something
else.

Returns
Improvement in quality function.

Return type
float

Notes

The idea is constrain the merging of nodes to another partition. In other words, if there is a partition P
which we want to refine, we can then initialize a new singleton partition, and move nodes in that partition
constrained to P.

See also:
Optimiser.move_nodes_constrained(), Optimiser.merge_nodes()

32 Chapter 6. Reference



leidenalg Documentation, Release 0.10.2.dev15+g56e7241.d20231013

Examples

>>> G = ig.Graph.Famous('Zachary')
>>> optimiser = la.Optimiser()
>>> partition = la.ModularityVertexPartition(G)
>>> diff = optimiser.optimise_partition(partition)
>>> refine_partition = la.ModularityVertexPartition(G)
>>> diff = optimiser.move_nodes_constrained(refine_partition, partition)

move_nodes(partition, is_membership_fixed=None, consider_comms=None)
Move nodes to alternative communities for optimising the partition.

Parameters
• partition – The partition for which to move nodes.

• is_membership_fixed (list of bools or None) – Boolean list of nodes that are not
allowed to change community. The length of this list must be equal to the number of nodes.
By default (None) all nodes can change community during the optimization.

• consider_comms – If None uses consider_comms, but can be set to something else.

Returns
Improvement in quality function.

Return type
float

Notes

When moving nodes, the function loops over nodes and considers moving the node to an alternative com-
munity. Which community depends on consider_comms. The function terminates when no more nodes
can be moved to an alternative community.

See also:
Optimiser.move_nodes_constrained(), Optimiser.merge_nodes()

Examples

>>> G = ig.Graph.Famous('Zachary')
>>> optimiser = la.Optimiser()
>>> partition = la.ModularityVertexPartition(G)
>>> diff = optimiser.move_nodes(partition)

move_nodes_constrained(partition, constrained_partition, consider_comms=None)
Move nodes to alternative communities for refining the partition.

Parameters
• partition – The partition for which to move nodes.

• constrained_partition – The partition within which we may move nodes.

• consider_comms – If None uses refine_consider_comms, but can be set to something
else.
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Returns
Improvement in quality function.

Return type
float

Notes

The idea is constrain the movement of nodes to alternative communities to another partition. In other words,
if there is a partition P which we want to refine, we can then initialize a new singleton partition, and move
nodes in that partition constrained to P.

See also:
Optimiser.move_nodes(), Optimiser.merge_nodes_constrained()

Examples

>>> G = ig.Graph.Famous('Zachary')
>>> optimiser = la.Optimiser()
>>> partition = la.ModularityVertexPartition(G)
>>> diff = optimiser.optimise_partition(partition)
>>> refine_partition = la.ModularityVertexPartition(G)
>>> diff = optimiser.move_nodes_constrained(refine_partition, partition)

optimise_partition(partition, n_iterations=2, is_membership_fixed=None)
Optimise the given partition.

Parameters
• partition – The MutableVertexPartition to optimise.

• n_iterations (int) – Number of iterations to run the Leiden algorithm. By default, 2
iterations are run. If the number of iterations is negative, the Leiden algorithm is run until
an iteration in which there was no improvement.

• is_membership_fixed (list of bools or None) – Boolean list of nodes that are not
allowed to change community. The length of this list must be equal to the number of nodes.
By default (None) all nodes can change community during the optimization.

Returns
Improvement in quality function.

Return type
float

Examples

>>> G = ig.Graph.Famous('Zachary')
>>> optimiser = la.Optimiser()
>>> partition = la.ModularityVertexPartition(G)
>>> diff = optimiser.optimise_partition(partition)

or, fixing the membership of some nodes:
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>>> is_membership_fixed = [False for v in G.vs]
>>> is_membership_fixed[4] = True
>>> is_membership_fixed[6] = True
>>> diff = optimiser.optimise_partition(partition, is_membership_fixed=is_
→˓membership_fixed)

optimise_partition_multiplex(partitions, layer_weights=None, n_iterations=2,
is_membership_fixed=None)

Optimise the given partitions simultaneously.

Parameters
• partitions – List of MutableVertexPartition layers to optimise.

• layer_weights – List of weights of layers.

• is_membership_fixed (list of bools or None) – Boolean list of nodes that are not
allowed to change community. The length of this list must be equal to the number of nodes.
By default (None) all nodes can change community during the optimization.

• n_iterations (int) – Number of iterations to run the Leiden algorithm. By default, 2
iterations are run. If the number of iterations is negative, the Leiden algorithm is run until
an iteration in which there was no improvement.

Returns
Improvement in quality of combined partitions, see Notes.

Return type
float

Notes

This method assumes that the partitions are defined for graphs with the same vertices. The connections
between the vertices may be different, but the vertices themselves should be identical. In other words, all
vertices should have identical indices in all graphs (i.e. node i is assumed to be the same node in all graphs).
The quality of the overall partition is simply the sum of the individual qualities for the various partitions,
weighted by the layer_weight. If we denote by 𝑄𝑘 the quality of layer 𝑘 and the weight by 𝜆𝑘, the overall
quality is then

𝑄 =
∑︁
𝑘

𝜆𝑘𝑄𝑘.

This is particularly useful for graphs containing negative links. When separating the graph in two graphs,
the one containing only the positive links, and the other only the negative link, by supplying a negative
weight to the latter layer, we try to find relatively many positive links within a community and relatively
many negative links between communities. Note that in this case it may be better to assign a node to
a community to which it is not connected so that consider_comms may be better set to leidenalg.
ALL_COMMS.

Besides multiplex graphs where each node is assumed to have a single community, it is also use-
ful in the case of for example multiple time slices, or in situations where nodes can have differ-
ent communities in different slices. The package includes some special helper functions for using
optimise_partition_multiplex() in such cases, where there is a conversion required from (time)
slices to layers suitable for use in this function.

See also:
slices_to_layers(), time_slices_to_layers(), find_partition_multiplex(),
find_partition_temporal()
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Examples

>>> G_pos = ig.Graph.SBM(100, pref_matrix=[[0.5, 0.1], [0.1, 0.5]], block_
→˓sizes=[50, 50])
>>> G_neg = ig.Graph.SBM(100, pref_matrix=[[0.1, 0.5], [0.5, 0.1]], block_
→˓sizes=[50, 50])
>>> optimiser = la.Optimiser()
>>> partition_pos = la.ModularityVertexPartition(G_pos)
>>> partition_neg = la.ModularityVertexPartition(G_neg)
>>> diff = optimiser.optimise_partition_multiplex(
... partitions=[partition_pos, partition_neg],
... layer_weights=[1,-1])

property optimise_routine

Determine the routine to use for optimising a partition.

Notes

This attribute should be set to one of the following values

• leidenalg.MOVE_NODES Use move_nodes().

• leidenalg.MERGE_NODES Use merge_nodes().

property refine_consider_comms

Determine how alternative communities are considered for moving a node when refining a partition.

Nodes will only move to alternative communities that improve the given quality function.

Notes

This attribute should be set to one of the following values

• leidenalg.ALL_NEIGH_COMMS Consider all neighbouring communities for moving.

• leidenalg.ALL_COMMS Consider all communities for moving. This is especially useful in the case
of negative links, in which case it may be better to move a node to a non-neighbouring community.

• leidenalg.RAND_NEIGH_COMM Consider a random neighbour community for moving. The probabil-
ity to choose a community is proportional to the number of neighbours a node has in that community.

• leidenalg.RAND_COMM Consider a random community for moving. The probability to choose a
community is proportional to the number of nodes in that community.

property refine_partition

if True refine partition before aggregation.

Type
boolean

property refine_routine

Determine the routine to use for refining a partition.
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Notes

This attribute should be set to one of the following values

• leidenalg.MOVE_NODES Use move_nodes().

• leidenalg.MERGE_NODES Use merge_nodes().

resolution_profile(graph, partition_type, resolution_range, weights=None, bisect_func=<function
Optimiser.<lambda>>, min_diff_bisect_value=1, min_diff_resolution=0.001,
linear_bisection=False, number_iterations=1, **kwargs)

Use bisectioning on the resolution parameter in order to construct a resolution profile.

Parameters
• graph – The graph for which to construct a resolution profile.

• partition_type – The type of MutableVertexPartition used to find a partition (must
support resolution parameters obviously).

• resolution_range – The range of resolution values that we would like to scan.

• weights – If provided, indicates the edge attribute to use as a weight.

• bisect_func – The function used for bisectioning. For the methods currently imple-
mented, this should usually not be altered.

• min_diff_bisect_value – The difference in the value returned by the bisect_func below
which the bisectioning stops (i.e. by default, a difference of a single edge does not trigger
further bisectioning).

• min_diff_resolution – The difference in resolution below which the bisection-
ing stops. For positive differences, the logarithmic difference is used by default,
i.e. diff = log(res_1) - log(res_2) = log(res_1/res_2), for which diff >
min_diff_resolution to continue bisectioning. Set the linear_bisection to true in order
to use only linear bisectioning (in the case of negative resolution parameters for example,
which can happen with negative weights).

• linear_bisection – Whether the bisectioning will be done on a linear or on a logarith-
mic basis (if possible).

• number_iterations – Indicates the number of iterations of the algorithm to run. If neg-
ative (or zero) the algorithm is run until a stable iteration.

Returns
A list of partitions for different resolutions.

Return type
list of MutableVertexPartition

Examples

>>> G = ig.Graph.Famous('Zachary')
>>> optimiser = la.Optimiser()
>>> profile = optimiser.resolution_profile(G, la.CPMVertexPartition,
... resolution_range=(0,1))

set_rng_seed(value)
Set the random seed for the random number generator.
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Parameters
value – The integer seed used in the random number generator

6.1.3 MutableVertexPartition

class leidenalg.VertexPartition.MutableVertexPartition(graph, initial_membership=None)
Bases: VertexClustering

Contains a partition of a graph, derives from ig.VertexClustering. Please see the documentation of ig.
VertexClustering for more details about its functionality.

This class contains the basic implementation for optimising a partition. Specifically, it implements all the ad-
ministration necessary to keep track of the partition from various points of view. Internally, it keeps track of the
number of internal edges (or total weight), the size of the communities, the total incoming degree (or weight) for
a community, et cetera.

In order to keep the administration up-to-date, all changes in a partition should be done through move_node()
or set_membership(). The first moves a node from one community to another, and updates the administration.
The latter simply updates the membership vector and updates the administration.

The basic idea is that diff_move() computes the difference in the quality function if we would call
move_node() for the same move. These functions are overridden in any derived classes to provide an actual
implementation. These functions are used by Optimiser to optimise the partition.

Warning: This base class should never be used in practice, since only derived classes provide an actual
implementation.

Parameters
• graph – The ig.Graph on which this partition is defined.

• membership – The membership vector of this partition. Membership[i] = c implies that
node i is in community c. If None, it is initialised with a singleton partition community, i.e.
membership[i] = i.

classmethod FromPartition(partition, **kwargs)
Create a new partition from an existing partition.

Parameters
• partition – The MutableVertexPartition to replicate.

• **kwargs – Any remaining keyword arguments will be passed on to the constructor of the
new partition.

Notes

This may for example come in handy when determining the quality of a partition using a different method.
Suppose that we already have a partition p and that we want to determine the Significance of that partition.
We can then simply use

>>> p = la.find_partition(ig.Graph.Famous('Zachary'),
... la.ModularityVertexPartition)
>>> sig = la.SignificanceVertexPartition.FromPartition(p).quality()
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aggregate_partition(membership_partition=None)
Aggregate the graph according to the current partition and provide a default partition for it.

The aggregated graph can then be found as a parameter of the partition partition.graph.

Notes

This function contrasts to the function cluster_graph in igraph itself, which also provides the aggregate
graph, but we may require setting the appropriate resolution_parameter, weights and node_sizes.
In particular, this function also ensures that the quality defined on the aggregate partition is identical to the
quality defined on the original partition.

Examples

>>> G = ig.Graph.Famous('Zachary')
>>> partition = la.find_partition(G, la.ModularityVertexPartition)
>>> aggregate_partition = partition.aggregate_partition(partition)
>>> aggregate_graph = aggregate_partition.graph
>>> aggregate_partition.quality() == partition.quality()
True

diff_move(v, new_comm)
Calculate the difference in the quality function if node v is moved to community new_comm.

Parameters
• v – The node to move.

• new_comm – The community to move to.

Returns
Difference in quality function.

Return type
float

Notes

The difference returned by diff_move should be equivalent to first determining the quality of the parti-
tion, then calling move_node, and then determining again the quality of the partition and looking at the
difference. In other words

>>> partition = la.find_partition(ig.Graph.Famous('Zachary'),
... la.ModularityVertexPartition)
>>> diff = partition.diff_move(v=0, new_comm=0)
>>> q1 = partition.quality()
>>> partition.move_node(v=0, new_comm=0)
>>> q2 = partition.quality()
>>> round(diff, 10) == round(q2 - q1, 10)
True

Warning: Only derived classes provide actual implementations, the base class provides no implemen-
tation for this function.
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from_coarse_partition(partition, coarse_node=None)
Update current partition according to coarser partition.

Parameters
• partition (MutableVertexPartition) – The coarser partition used to update the cur-

rent partition.

• coarse_node (list of int) – The coarser node which represent the current node in the
partition.

Notes

This function is to be used to determine the correct partition for an aggregated graph. In particular, suppose
we move nodes and then get an aggregate graph.

>>> diff = optimiser.move_nodes(partition)
>>> aggregate_partition = partition.aggregate_partition()

Now we also move nodes in the aggregate partition

>>> diff = optimiser.move_nodes(aggregate_partition)

Now we improved the quality function of aggregate_partition, but this is not yet reflected in the orig-
inal partition. We can thus call

>>> partition.from_coarse_partition(aggregate_partition)

so that partition now reflects the changes made to aggregate_partition.

The coarse_node can be used it the aggregate_partition is not defined based on the membership of
this partition. In particular the membership of this partition is defined as follows:

>>> for v in G.vs:
... partition.membership[v] = aggregate_partition.membership[coarse_node[v]]

If coarse_node is None it is assumed the coarse node was defined based on the membership of the current
partition, so that

>>> for v in G.vs:
... partition.membership[v] = aggregate_partition.membership[partition.
→˓membership[v]]

This can be useful when the aggregate partition is defined on a more refined partition.

move_node(v, new_comm)
Move node v to community new_comm.

Parameters
• v – Node to move.

• new_comm – Community to move to.
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Examples

>>> G = ig.Graph.Famous('Zachary')
>>> partition = la.ModularityVertexPartition(G)
>>> partition.move_node(0, 1)

quality()

The current quality of the partition.

renumber_communities()

Renumber the communities so that they are numbered in decreasing size.

Notes

The sort is not necessarily stable.

set_membership(membership)
Set membership.

total_possible_edges_in_all_comms()

The total possible number of edges in all communities.

Notes

If we denote by 𝑛𝑐 the number of nodes in community 𝑐, this is simply∑︁
𝑐

(︂
𝑛𝑐

2

)︂

total_weight_from_comm(comm)
The total weight (i.e. number of edges) from a community.

Parameters
comm – Community

Notes

This includes all edges, also the ones that are internal to a community. Sometimes this is also referred to
as the community (out)degree.

See also:
total_weight_to_comm(), total_weight_in_comm(), total_weight_in_all_comms()

total_weight_in_all_comms()

The total weight (i.e. number of edges) within all communities.
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Notes

This should be equal to simply the sum of total_weight_in_comm for all communities.

See also:
total_weight_to_comm(), total_weight_from_comm(), total_weight_in_comm()

total_weight_in_comm(comm)
The total weight (i.e. number of edges) within a community.

Parameters
comm – Community

See also:
total_weight_to_comm(), total_weight_from_comm(), total_weight_in_all_comms()

total_weight_to_comm(comm)
The total weight (i.e. number of edges) to a community.

Parameters
comm – Community

Notes

This includes all edges, also the ones that are internal to a community. Sometimes this is also referred to
as the community (in)degree.

See also:
total_weight_from_comm(), total_weight_in_comm(), total_weight_in_all_comms()

weight_from_comm(v, comm)
The total number of edges (or sum of weights) to node v from community comm.

See also:
weight_to_comm()

weight_to_comm(v, comm)
The total number of edges (or sum of weights) from node v to community comm.

See also:
weight_from_comm()

6.1.4 ModularityVertexPartition

class leidenalg.ModularityVertexPartition(graph, initial_membership=None, weights=None)
Bases: MutableVertexPartition

Implements modularity. This quality function is well-defined only for positive edge weights.
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Notes

The quality function is

𝑄 =
1

2𝑚

∑︁
𝑖𝑗

(︂
𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗
2𝑚

)︂
𝛿(𝜎𝑖, 𝜎𝑗)

where 𝐴 is the adjacency matrix, 𝑘𝑖 is the (weighted) degree of node 𝑖, 𝑚 is the total number of edges (or total
edge weight), 𝜎𝑖 denotes the community of node 𝑖 and 𝛿(𝜎𝑖, 𝜎𝑗) = 1 if 𝜎𝑖 = 𝜎𝑗 and 0 otherwise.

This can alternatively be formulated as a sum over communities:

𝑄 =
1

2𝑚

∑︁
𝑐

(︂
𝑚𝑐 −

𝐾2
𝑐

4𝑚

)︂
where 𝑚𝑐 is the number of internal edges (or total internal edge weight) of community 𝑐 and 𝐾𝑐 =

∑︀
𝑖|𝜎𝑖=𝑐 𝑘𝑖

is the total (weighted) degree of nodes in community 𝑐.

Note that for directed graphs a slightly different formulation is used, as proposed by Leicht and Newman [2]:

𝑄 =
1

𝑚

∑︁
𝑖𝑗

(︃
𝐴𝑖𝑗 −

𝑘out𝑖 𝑘in𝑗
𝑚

)︃
𝛿(𝜎𝑖, 𝜎𝑗),

where 𝑘out𝑖 and 𝑘in𝑖 refers to respectively the outdegree and indegree of node 𝑖, and 𝐴𝑖𝑗 refers to an edge from 𝑖
to 𝑗.

References

Parameters
• graph (ig.Graph) – Graph to define the partition on.

• initial_membership (list of int) – Initial membership for the partition. If None then
defaults to a singleton partition.

• weights (list of double, or edge attribute) – Weights of edges. Can be either
an iterable or an edge attribute.

6.1.5 RBConfigurationVertexPartition

class leidenalg.RBConfigurationVertexPartition(graph, initial_membership=None, weights=None,
resolution_parameter=1.0)

Bases: LinearResolutionParameterVertexPartition

Implements Reichardt and Bornholdt’s Potts model with a configuration null model. This quality function is
well-defined only for positive edge weights. This quality function uses a linear resolution parameter.
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Notes

The quality function is

𝑄 =
∑︁
𝑖𝑗

(︂
𝐴𝑖𝑗 − 𝛾

𝑘𝑖𝑘𝑗
2𝑚

)︂
𝛿(𝜎𝑖, 𝜎𝑗)

where 𝐴 is the adjacency matrix, 𝑘𝑖 is the (weighted) degree of node 𝑖, 𝑚 is the total number of edges (or total
edge weight), 𝜎𝑖 denotes the community of node 𝑖 and 𝛿(𝜎𝑖, 𝜎𝑗) = 1 if 𝜎𝑖 = 𝜎𝑗 and 0 otherwise.

This can alternatively be formulated as a sum over communities:

𝑄 =
∑︁
𝑐

(︂
𝑚𝑐 − 𝛾

𝐾2
𝑐

4𝑚

)︂
where 𝑚𝑐 is the number of internal edges (or total internal edge weight) of community 𝑐 and 𝐾𝑐 =

∑︀
𝑖|𝜎𝑖=𝑐 𝑘𝑖

is the total (weighted) degree of nodes in community 𝑐.

Note that for directed graphs a slightly different formulation is used, as proposed by Leicht and Newman [2]:

𝑄 =
∑︁
𝑖𝑗

(︃
𝐴𝑖𝑗 − 𝛾

𝑘out𝑖 𝑘in𝑗
𝑚

)︃
𝛿(𝜎𝑖, 𝜎𝑗),

where 𝑘out𝑖 and 𝑘in𝑖 refers to respectively the outdegree and indegree of node 𝑖, and 𝐴𝑖𝑗 refers to an edge from 𝑖
to 𝑗.

Note that this is the same as ModularityVertexPartition when setting 𝛾 = 1 and normalising by 2𝑚, or 𝑚
for directed graphs.

References

Parameters
• graph (ig.Graph) – Graph to define the partition on.

• initial_membership (list of int) – Initial membership for the partition. If None then
defaults to a singleton partition.

• weights (list of double, or edge attribute) – Weights of edges. Can be either
an iterable or an edge attribute.

• resolution_parameter (double) – Resolution parameter.

property resolution_parameter

Resolution parameter.

6.1.6 RBERVertexPartition

class leidenalg.RBERVertexPartition(graph, initial_membership=None, weights=None, node_sizes=None,
resolution_parameter=1.0)

Bases: LinearResolutionParameterVertexPartition

Implements Reichardt and Bornholdt’s Potts model with an Erdős-Rényi null model. This quality function is
well-defined only for positive edge weights. This quality function uses a linear resolution parameter.
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Notes

The quality function is

𝑄 =
∑︁
𝑖𝑗

(𝐴𝑖𝑗 − 𝛾𝑝) 𝛿(𝜎𝑖, 𝜎𝑗)

where 𝐴 is the adjacency matrix,

𝑝 =
𝑚(︀
𝑛
2

)︀
is the overall density of the graph, 𝜎𝑖 denotes the community of node 𝑖, 𝛿(𝜎𝑖, 𝜎𝑗) = 1 if 𝜎𝑖 = 𝜎𝑗 and 0 otherwise,
and, finally 𝛾 is a resolution parameter.

This can alternatively be formulated as a sum over communities:

𝑄 =
∑︁
𝑐

[︂
𝑚𝑐 − 𝛾𝑝

(︂
𝑛𝑐

2

)︂]︂
where 𝑚𝑐 is the number of internal edges of community 𝑐 and 𝑛𝑐 the number of nodes in community 𝑐.

References

Parameters
• graph (ig.Graph) – Graph to define the partition on.

• initial_membership (list of int) – Initial membership for the partition. If None then
defaults to a singleton partition.

• weights (list of double, or edge attribute) – Weights of edges. Can be either
an iterable or an edge attribute.

• node_sizes (list of int, or vertex attribute) – The quality function takes into
account the size of a community, which is defined as the sum over the sizes of each individual
node. By default, the node sizes are set to 1, meaning that the size of a community equals
the number of nodes of a community. If a node already represents an aggregation, this could
be reflect in its node size.

• resolution_parameter (double) – Resolution parameter.

6.1.7 CPMVertexPartition

class leidenalg.CPMVertexPartition(graph, initial_membership=None, weights=None, node_sizes=None,
resolution_parameter=1.0, correct_self_loops=None)

Bases: LinearResolutionParameterVertexPartition

Implements the Constant Potts Model (CPM). This quality function is well-defined for both positive and negative
edge weights. This quality function uses a linear resolution parameter.
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Notes

The Constant Potts Model (CPM) quality function is

𝑄 =
∑︁
𝑖𝑗

(𝐴𝑖𝑗 − 𝛾) 𝛿(𝜎𝑖, 𝜎𝑗)

where 𝐴 is the adjacency matrix, 𝜎𝑖 denotes the community of node 𝑖, 𝛿(𝜎𝑖, 𝜎𝑗) = 1 if 𝜎𝑖 = 𝜎𝑗 and 0 otherwise,
and, finally 𝛾 is a resolution parameter.

This can alternatively be formulated as a sum over communities:

𝑄 =
∑︁
𝑐

[︂
𝑚𝑐 − 𝛾

(︂
𝑛𝑐

2

)︂]︂
where 𝑚𝑐 is the number of internal edges of community 𝑐 and 𝑛𝑐 the number of nodes in community 𝑐.

The resolution parameter 𝛾 for this functions has a particularly simple interpretation. The internal density of
communities

𝑝𝑐 =
𝑚𝑐(︀
𝑛𝑐

2

)︀ ≥ 𝛾

is higher than 𝛾, while the external density

𝑝𝑐𝑑 =
𝑚𝑐𝑑

𝑛𝑐𝑛𝑑
≤ 𝛾

is lower than 𝛾. In other words, choosing a particular 𝛾 corresponds to choosing to find communities of a partic-
ular density, and as such defines communities. Finally, the definition of a community is in a sense independent
of the actual graph, which is not the case for any of the other methods (see the reference for more detail).

References

Parameters
• graph (ig.Graph) – Graph to define the partition on.

• initial_membership (list of int) – Initial membership for the partition. If None then
defaults to a singleton partition.

• weights (list of double, or edge attribute) – Weights of edges. Can be either
an iterable or an edge attribute.

• node_sizes (list of int, or vertex attribute) – The quality function takes into
account the size of a community, which is defined as the sum over the sizes of each individual
node. By default, the node sizes are set to 1, meaning that the size of a community equals
the number of nodes of a community. If a node already represents an aggregation, this could
be reflect in its node size.

• resolution_parameter (double) – Resolution parameter.

classmethod Bipartite(graph, resolution_parameter_01, resolution_parameter_0=0,
resolution_parameter_1=0, degree_as_node_size=False, types='type', **kwargs)

Create three layers for bipartite partitions.

This creates three layers for bipartite partition necessary for detecting communities in bipartite net-
works. These three layers should be passed to Optimiser.optimise_partition_multiplex() with
layer_weights=[1,-1,-1]. See Notes for more details.
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Parameters
• graph (ig.Graph) – Graph to define the bipartite partitions on.

• resolution_parameter_01 (double) – Resolution parameter for in between two
classes.

• resolution_parameter_0 (double) – Resolution parameter for class 0.

• resolution_parameter_1 (double) – Resolution parameter for class 1.

• degree_as_node_size (boolean) – If True use degree as node size instead of 1, to
mimic modularity, see Notes.

• types (vertex attribute or list) – Indicator of the class for each vertex. If not 0,
1, it is automatically converted.

• **kwargs – Additional arguments passed on to default constructor of
CPMVertexPartition.

Returns
• ig.CPMVertexPartition – partition containing the bipartite graph and correct node

sizes.

• ig.CPMVertexPartition – partition for type 0, containing the correct node sizes for type
0.

• ig.CPMVertexPartition – partition for type 1, containing the correct node sizes for type
1.

Notes

For bipartite networks, we would like to be able to set three different resolution parameters: one for within
each class 𝛾0, 𝛾1, and one for the links between classes, 𝛾01. Then the formulation would be

𝑄 =
∑︁
𝑖𝑗

[𝐴𝑖𝑗 − (𝛾0𝛿(𝑠𝑖, 0) + 𝛾1𝛿(𝑠𝑖, 1))𝛿(𝑠𝑖, 𝑠𝑗)− 𝛾01(1− 𝛿(𝑠𝑖, 𝑠𝑗))]𝛿(𝜎𝑖, 𝜎𝑗)

In terms of communities this is

𝑄 =
∑︁
𝑐

(𝑒𝑐 − 𝛾012𝑛𝑐(0)𝑛𝑐(1)− 𝛾0𝑛
2
𝑐(0)− 𝛾1𝑛

2
𝑐(1))

where 𝑛𝑐(0) is the number of nodes in community 𝑐 of class 0 (and similarly for 1) and 𝑒𝑐 is the number of
edges within community 𝑐. We denote by 𝑛𝑐 = 𝑛𝑐(0) + 𝑛𝑐(1) the total number of nodes in community 𝑐.

We achieve this by creating three layers : (1) all nodes have node_size = 1 and all relevant links; (2)
only nodes of class 0 have node_size = 1 and no links; (3) only nodes of class 1 have node_size = 1
and no links. If we add the first with resolution parameter 𝛾01, and the others with resolution parameters
𝛾01 − 𝛾0 and 𝛾01 − 𝛾1, but the latter two with a layer weight of -1 while the first layer has layer weight 1,
we obtain the following:

𝑄 =
∑︁
𝑐

(𝑒𝑐 − 𝛾01𝑛
2
𝑐)−

∑︁
𝑐

(−(𝛾01 − 𝛾0)𝑛𝑐(0)
2)−

∑︁
𝑐

(−(𝛾01 − 𝛾1)𝑛𝑐(1)
2)

=
∑︁
𝑐

[𝑒𝑐 − 𝛾012𝑛𝑐(0)𝑛𝑐(1)− 𝛾01𝑛𝑐(0)
2 − 𝛾01𝑛𝑐(1)

2) + (𝛾01 − 𝛾0)𝑛𝑐(0)
2 + (𝛾01 − 𝛾1)𝑛𝑐(1)

2]

=
∑︁
𝑐

[𝑒𝑐 − 𝛾012𝑛𝑐(0)𝑛𝑐(1)− 𝛾0𝑛𝑐(0)
2 − 𝛾1𝑛𝑐(1)

2]
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Although the derivation above is using𝑛2
𝑐 , implicitly assuming a direct graph with self-loops, similar deriva-

tions can be made for undirected graphs using
(︀
𝑛𝑐

2

)︀
, but the notation is then somewhat more convoluted.

If we set node sizes equal to the degree, we get something similar to modularity, except that the resolution
parameter should still be divided by 2𝑚. In particular, in general (i.e. not specifically for bipartite graph)
if node_sizes=G.degree() we then obtain

𝑄 =
∑︁
𝑖𝑗

𝐴𝑖𝑗 − 𝛾𝑘𝑖𝑘𝑗

In the case of bipartite graphs something similar is obtained, but then correctly adapted (as long as the
resolution parameter is also appropriately rescaled).

Note: This function is not suited for directed graphs in the case of using the degree as node sizes.

6.1.8 SignificanceVertexPartition

class leidenalg.SignificanceVertexPartition(graph, initial_membership=None, node_sizes=None)
Bases: MutableVertexPartition

Implements Significance. This quality function is well-defined only for unweighted graphs.

Notes

The quality function is

𝑄 =
∑︁
𝑐

(︂
𝑛𝑐

2

)︂
𝐷(𝑝𝑐 ‖ 𝑝)

where 𝑛𝑐 is the number of nodes in community 𝑐,

𝑝𝑐 =
𝑚𝑐(︀
𝑛𝑐

2

)︀ ,
is the density of community 𝑐,

𝑝 =
𝑚(︀
𝑛
2

)︀
is the overall density of the graph, and finally

𝐷(𝑥 ‖ 𝑦) = 𝑥 ln
𝑥

𝑦
+ (1− 𝑥) ln

1− 𝑥

1− 𝑦

is the binary Kullback-Leibler divergence.

For directed graphs simply multiply the binomials by 2. The expected Significance in Erdos-Renyi graphs be-
haves roughly as 1

2𝑛 ln𝑛 for both directed and undirected graphs in this formulation.

Warning: This method is not suitable for weighted graphs.
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References

Parameters
• graph (ig.Graph) – Graph to define the partition on.

• initial_membership (list of int) – Initial membership for the partition. If None then
defaults to a singleton partition.

• node_sizes (list of int, or vertex attribute) – The quality function takes into
account the size of a community, which is defined as the sum over the sizes of each individual
node. By default, the node sizes are set to 1, meaning that the size of a community equals
the number of nodes of a community. If a node already represents an aggregation, this could
be reflect in its node size.

6.1.9 SurpriseVertexPartition

class leidenalg.SurpriseVertexPartition(graph, initial_membership=None, weights=None,
node_sizes=None)

Bases: MutableVertexPartition

Implements (asymptotic) Surprise. This quality function is well-defined only for positive edge weights.

Notes

The quality function is

𝑄 = 𝑚𝐷(𝑞 ‖ ⟨𝑞⟩)

where 𝑚 is the number of edges,

𝑞 =

∑︀
𝑐 𝑚𝑐

𝑚
,

is the fraction of internal edges,

⟨𝑞⟩ =
∑︀

𝑐

(︀
𝑛𝑐

2

)︀(︀
𝑛
2

)︀
is the expected fraction of internal edges, and finally

𝐷(𝑥 ‖ 𝑦) = 𝑥 ln
𝑥

𝑦
+ (1− 𝑥) ln

1− 𝑥

1− 𝑦

is the binary Kullback-Leibler divergence.

For directed graphs we can multiplying the binomials by 2, and this leaves ⟨𝑞⟩ unchanged, so that we can simply
use the same formulation. For weighted graphs we can simply count the total internal weight instead of the total
number of edges for 𝑞, while ⟨𝑞⟩ remains unchanged.
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References

Parameters
• graph (ig.Graph) – Graph to define the partition on.

• initial_membership (list of int) – Initial membership for the partition. If None then
defaults to a singleton partition.

• weights (list of double, or edge attribute) – Weights of edges. Can be either
an iterable or an edge attribute.

• node_sizes (list of int, or vertex attribute) – The quality function takes into
account the size of a community, which is defined as the sum over the sizes of each individual
node. By default, the node sizes are set to 1, meaning that the size of a community equals
the number of nodes of a community. If a node already represents an aggregation, this could
be reflect in its node size.

• genindex

• search
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